ГлавнаяСобираем компьютерВнутренние устройства
 

Внутренние устройства

Внутренние устройства

Компьютер представляет собой модульную конструкцию, в которую входят внутренние и внешние комплектующие. В данном разделе речь пойдет об основных внутренних устройствах.

Корпус не относится к внутренним устройствам, но является местом их расположения, поэтому будет рассмотрен именно в этом разделе.

Корпус представляет собой металлический или пластиковый контейнер, в который устанавливаются материнская плата, процессор, оперативная память, видеоадаптер, звуковая и сетевая карты, внутренний модем, винчестер, дисковод, CD/DVD-привод и т. д.

На передней панели корпуса обычно расположены две кнопки: включения/выключения и перезагрузки. Часто сюда выводятся дополнительные порты, например USB или FireWire, а также звуковой выход на акустическую систему и вход для микрофона.

Основу корпуса составляет рама, к которой крепятся:

• блок питания;

• шасси крепления материнской платы;

• передняя панель;

• секции для 3,5– и 5,25-дюймовых устройств;

• крышка.

У современных компьютерных корпусов крышки обычно две – левая и правая (снимаются раздельно), а в ранних – одна (П-образного вида). Корпусы с раздельными крышками удобнее: как правило, снимать требуется только часть, которая открывает доступ к материнской плате, установленным на ней платам расширений и задним панелям устройств хранения данных.

Рама, панель крепления материнской платы, корпус блока питания и секции накопителей изготавливаются из стали (реже – из алюминия или дюралюминия), а лицевая панель – из пластика или оргстекла.

Часто встречаются корпусы с легкосъемными лицевыми панелями, которые пользователи могут менять самостоятельно.

В корпусе современного компьютера сконцентрировано большое количество устройств, выделяющих тепло. Особенно интенсивно это делают процессоры на материнской плате и видеокарте, модули оперативной памяти, микросхемы контроллера жесткого диска и элементы блока питания.

Процессоры уже давно не работают без кулера. Сегодня этим охладительным прибором оснащаются даже видеокарты и некоторые винчестеры. В современном корпусе обычно предусмотрены места для установки дополнительных вентиляторов.

Верхняя часть передней панели практически любого корпуса состоит из секций, закрытых заглушками. По мере необходимости заглушки вынимаются, и их место занимают CD/DVD-привод, дисковод и другие устройства. В нижней или средней части панели расположены кнопки включения/выключения и перезагрузки и панель дополнительных портов. Могут также присутствовать различные LCD-панели.

Существует два основных типа корпуса: Desktop (настольный, горизонтальный) и Tower (вертикального исполнения). Кроме того, существуют промежуточные варианты, сочетающие черты обоих типов.

При выборе корпуса следует обратить внимание на:

• размер – в любой момент может потребоваться установить в корпус дополнительное (новое) оборудование;

• систему вентиляции – необходима для поддержания оптимального температурного режима работы всех комплектующих;

• внешний вид – выбирайте корпус с красивой и функциональной передней панелью, на которой присутствует дополнительная панель с USB-портами и аудиовходом/выходом.

Сегодня выпускаются корпусы разных форм-факторов. Размер корпуса в первую очередь зависит от исполнения материнской платы, а во вторую – от количества устанавливаемых в него комплектующих, мощности блока питания и способов вентиляции.

Корпусы часто снабжены дверцей, полностью или частично прикрывающей переднюю панель. Это не столько необходимость, сколько модная тенденция.

На компьютерном рынке присутствует огромное количество разнообразных корпусов, отличающихся размером, ориентацией, цветом и дизайном.

Как показывает практика, пользователи чаще всего покупают корпусы с форм-факторами Midi (Middle) Tower и Big (Full) Tower. Популярность этих моделей обусловлена, прежде всего, требованиями, которые диктуют современные комплектующие.

На сегодняшний день выпускаются следующие типы корпусов.

• Desktop предназначен для установки на стол. Основные отличительные черты: сравнительно небольшие размеры (обычно 45 х 45 х 20 см) и горизонтальный способ расположения, благодаря чему на него можно поставить ЖК-монитор (1).

2.1. Внутренние устройства

1. Корпус типа Desktop

 

Главный недостаток – малая вместительность. В таких корпусах предусмотрены два 5,25-дюймовых, один или два 3,5-дюймовых отсека и устанавливаются блоки питания небольшой мощности (примерно 200 Вт), что является серьезным препятствием для разгона процессора и видеокарты.

Пользователи назвали эту модель бюджетной, то есть используемой преимущественно для сборки офисных компьютеров.

• Slim Desktop (2) является разновидностью Desktop-корпуса и представляет собой его уменьшенную модификацию. Высота такого корпуса редко превышает 8 см, что сказывается не только на формате устанавливаемой материнской платы, но и на количестве слотов для плат расширения. В корпусе Slim Desktop присутствует только по одному внешнему 3,5– и 5,25-дюймовому отсеку. Поскольку содержимое такого корпуса не может быть требовательным к мощности блока питания, то в Slim Desktop устанавливают блоки питания мощностью не более 200 Вт (как правило, 150 Вт).

2.1. Внутренние устройства

2. Корпус типа Slim Desktop

 

Этот тип корпуса предназначен для использования только в компьютерах с конфигурацией, которая практически не поддается модернизации. Пользователи не покупают корпусы Slim Desktop для сборки домашнего компьютера.

Достоинства корпуса этого типа – вес (1,5–3 кг) и бесшумность (в Slim Desktop устанавливается блок питания без вентилятора и организована пассивная система охлаждения видеокарты).

• Mini Tower имеет вертикальную ориентацию (3) и предназначен для установки на стол или в другое подходящее место. В свое время это был самый популярный тип корпуса, поскольку в него помещалось все необходимое оборудование.

2.1. Внутренние устройства

3. Корпус типа Mini Tower

 

Благодаря увеличенным размерам (45 х 20 х 45 см) корпус типа Mini Tower имеет по два-три 3,5– и 5,25-дюймовых отсека, которых вполне достаточно для подключения необходимого количества устройств.

Корпусы такого типа обычно оснащаются блоками питания мощностью 250 Вт, которые обеспечивают стабильную работу всех устройств. Однако разгонять комплектующие можно, только постоянно следя за температурным режимом, поскольку в Mini Tower непродуманная и неэффективная система вентиляции.

• Midi Tower (4) продолжает модельный ряд Tower. Его основное отличие от Mini Tower – большая высота (размер 50 х 20 х 45 см), что позволяет вместить один дополнительный 5,25-дюймовый отсек. Увеличенное внутреннее пространство корпуса способствует улучшению вентиляции и соблюдению необходимого температурного режима.

2.1. Внутренние устройства

4. Корпуса типа Midi Tower

 

Корпусы этого типа позволяют не только легко модернизировать систему, но и разгонять комплектующие, поэтому Midi Tower наиболее популярны среди пользователей.

Как правило, в такой корпус устанавливается блок питания мощностью от 300 Вт, однако можно установить блок питания любой большей мощности. Для этого в корпусе предусмотрены вентиляционные решетки и крепления для дополнительных вентиляторов.

• Big Tower – еще один представитель класса Tower (5). Его основные характеристики: шесть-восемь 5,25-дюймовых отсеков и от двух до пяти 3,5-дюймовых (размер 65 х 20 х 48 см).

2.1. Внутренние устройства

5. Корпус типа Big Tower

 

Компьютер с системным блоком Big Tower можно использовать в качестве мощной лаборатории по обработке видео и для других целей. Обычно такой корпус снабжается дополнительными вентиляторами для охлаждения комплектующих и блоком питания мощностью более 350 Вт. Как правило, корпус имеет откидную переднюю крышку, под которой расположены лицевые панели установленных устройств и кнопки управления компьютером.

• File Server (6) достаточно специфичен и применяется только для организации серверов. Размеры такого корпуса зависят от его содержимого.

2.1. Внутренние устройства

6. Корпус типа File Server

 

Как правило, в нем предусмотрено от восьми до десяти 5,25-дюймовых отсеков и несколько 3,5-дюймовых. Поскольку серверный системный блок достаточно тяжелый, он часто имеет колесики, позволяющие легко перемещать его по ровной поверхности.

На передней панели корпуса находятся индикаторы и другие элементы управления и контроля, а внутри – несколько (обычно два-три) дополнительных вентиляторов для охлаждения внутренних устройств.

В корпус типа File Server обычно устанавливается блок питания мощностью не менее 400 Вт (а иногда и дополнительный, чтобы повысить отказоустойчивость системы). Такие корпусы имеют открывающуюся (откидывающуюся) переднюю крышку с замком, которая надежно скрывает элементы управления компьютером и устройствами хранения данных.

Современному компьютеру необходим мощный и стабильный блок питания.

Основное предназначение блока питания – преобразование переменного тока высокого напряжения (110–230 В) в постоянный и стабилизированный ток низкого напряжения (±12 и ±5 В), который питает практически все компоненты компьютера. Если какому-то из устройств требуется другое напряжение, оно либо само преобразует имеющееся питание, либо использует питание, переработанное стабилизаторами материнской платы.

Без напряжения работа компьютера невозможна, поэтому к выбору блока питания следует подходить с ответственностью, особенно если планируется установка новых внутренних или внешних устройств или разгон комплектующих.

Внешне блок питания выглядит как металлическая коробка (7), в которой расположены электронные схемы и один-два вентилятора для охлаждения самого блока. Со стороны, выходящей на заднюю стенку корпуса, вентилятор закрыт решеткой, чтобы предотвратить попадание в него инородных предметов.

2.1. Внутренние устройства

7. Внешний вид блока питания

 

На задней стенке блока расположены разъем для подключения кабеля, выключатель напряжения и дополнительный разъем для подсоединения кабеля питания монитора. В последнее время популярны блоки питания, у которых имеется также регулятор скорости вращения вентилятора.

На передней стенке блока находится отверстие, через которое выходит пучок проводов с группами контактов, на которых присутствует формируемое блоком питания напряжение 5 и 12 В, и дополнительные вентиляционные отверстия, через которые теплый воздух вытягивается из корпуса и попадает на вентилятор, который в свою очередь направляет его наружу.

В дорогих блоках питания вентиляция продумана более рационально: вентиляционная решетка или отверстия находятся не на передней стенке, а на нижней. Это обеспечивает более эффективное охлаждение процессора, так как нагретый воздух вытягивается прямо с радиатора.

Основные требования, предъявляемые к блоку питания, – это мощность, стабильность вырабатываемого электропитания и шум вентилятора. Последний фактор кажется не столь важным, однако сильный гул раздражает. Во избежание этого используются специальные регуляторы скорости вращения вентилятора, а также прикрывающая его модифицированная решетка.

Примечание

Именно решетка в большинстве случаев является причиной шума, поскольку расположена на пути выходящего из блока питания воздуха; чтобы избавиться от этого эффекта, в блоки питания часто устанавливают сеточные решетки, которые пропускают воздух менее шумно.

От мощности блока питания напрямую зависит количество подключаемых устройств и возможность разгона комплектующих. Каждое устройство использует определенный запас мощности, который небезграничен и быстро исчерпывается. Учитывая требовательность современных процессоров, графических адаптеров и оперативной памяти к ресурсам, мощность блока питания – критичный фактор.

Ниже (табл. 2.1) приведен пример конфигурации компьютера, ориентированного на офисное использование, и подсчитана приблизительная мощность, потребляемая его комплектующими.

Таблица 2.1. Потребление энергии комплектующими компьютера

2.1. Внутренние устройства

В сумме получается приблизительно 250 Вт. Это означает, что блок питания должен не только обеспечивать такую мощность, но и иметь запас. Не следует забывать о подключении USB-устройств, которые также отнимают у блока питания часть мощности.

В зависимости от типа корпуса, используются блоки питания от 150 Вт и выше; если подходить к выбору блока питания из расчета средней конфигурации, то подходящим вариантом будет блок с минимальной мощностью 300 Вт.

Следует также учесть, что разгон процессора или видеокарты увеличивает потребляемую ими мощность почти вдвое, поэтому логично приобретать блок питания мощностью 350 Вт. Это не означает, что он будет постоянно потреблять 350 Вт – используется только необходимая в определенный момент часть мощности, все остальное – это запас.

Удобно использовать специальные утилиты, рассчитывающие потребляемую мощность, основываясь на реальных данных для разных комплектующих. Примером такой утилиты может быть Power Supply Calculator.

Стабильность электропитания – это также немаловажный фактор. Не зря блок питания имеет напряжения 5 и 12 В, а не 5,7 или 11,3 В. Некоторые комплектующие (например, процессор) требуют питания определенной величины (например, 1,7 В). Они получают его от стабилизаторов на материнской плате, которые, в свою очередь, переделывают его из питания 5 В; если электропитание нестабильно, это приводит не только к лишней нагрузке на стабилизаторы материнской платы, но и к нестабильной работе других устройств.

На основе вышеизложенного можно дать следующие рекомендации:

• приобретайте блок питания известного производителя (тогда можно быть уверенным, что компьютер будет работать стабильно);

• покупайте блок питания с запасом мощности, но не менее 300 Вт (если вы не используете корпус типа Desktop или Slim);

• выбирайте блок питания с вентиляторами, скорость вращения которых регулируется.

Материнская плата (8) – главная составная часть компьютера. От ее качества, функциональности и быстродействия напрямую зависит стабильность и скорость работы системы.

2.1. Внутренние устройства

8. Внешний вид материнской платы

 

Материнская плата определяет тип процессора и оперативной памяти, которые могут быть установлены в компьютер. От форм-фактора материнской платы также зависит количество расположенных на ней слотов расширения, интегрированных контроллеров и т. п.

Выбирая материнскую плату, обратите внимание, чтобы на ней присутствовали:

• один из последних процессорных слотов (чтобы можно было использовать новые процессоры и модернизировать систему);

• слот PCI Express, желательно последней спецификации с поддержкой видеокарт новейших моделей;

• как можно большее количество PCI-слотов и разъемов для установки оперативной памяти;

• дополнительные USB-контроллеры, FireWire-контроллер и контроллер IEEE 802.11.

Обратите внимание также на удобство расположения (в нижней части) IDE– и SerialATA-коннекторов и выбирайте платы, у которых система охлаждения системной логики организована посредством тепловых трубок.

Спецификация материнских плат. Спецификация определяет не только размер материнской платы, но и ее функциональные особенности, например наличие разного количества слотов шин, интегрированных контроллеров и т. д.

Существуют различные форм-факторы материнских плат, отвечающие определенным спецификациям. Сегодня преобладают несколько типов размеров: ATX, LPX, NLX и BTX. Выпускаются также уменьшенные варианты упомянутых форматов: mini-ATX, micro-ATX, flex-ATX, micro-NLX, micro-BTX, pico-BTX и т. д.

Знать, чем они отличаются и какие преимущества имеет каждый из них, необязательно – все форм-факторы самодостаточны и позволяют устанавливать на них необходимые платы расширения.

Выше упоминалось, что форм-фактор материнской платы не только определяет ее геометрические размеры, но и задает количество слотов расширения. Например, один PCI Express и шесть PCI-слотов присутствуют только на платах формата ATX или Extended ATX. На платах меньшего размера количество слотов другое (четыре у micro-ATX и три у flex-ATX). Часто один-два PCI-слота заменяются одним или двумя слотами PCI Express.

Процессорное гнездо, или слот (сокет), служит для установки центрального процессора (9).

2.1. Внутренние устройства

9. Пример процессорного слота

 

В зависимости от типа процессора, сокет может иметь разные интерфейсы. Еще недавно его стандартная конструкция представляла собой пластиковую площадку с множеством отверстий: в нее вставлялся процессор, который крепился с помощью небольшого сдвига верхней пластины.

Сейчас в моду входят процессоры от Intel, которые не имеют металлических выводов, а содержат только металлические площадки, куда упираются выводы процессорного слота. Выбирая материнскую плату, предварительно выясните, какие процессоры можно установить в ее сокет.

Системная логика (чипсет) – главный компонент платы, отвечающий за ее функционирование, а в конечном итоге и за работу всего компьютера. Как правило, он состоит из нескольких микросхем (10).

2.1. Внутренние устройства

10. Пример микросхемы системной логики

 

Чипсет состоит из двух мостов: северного и южного, за каждый из которых отвечает отдельная микросхема (или несколько микросхем).

В северном мосте реализован контроллер памяти, графических портов и шины PCI. В южном – контроллер ATA (IDE) для жестких дисков и IDE-устройств, порты ввода/вывода и др. контроллеры. Южный мост соединяется с северным с помощью PCI-шины.

Функции южного моста постоянно расширяются. В настоящее время в него входят следующие контроллеры:

• АТА и IDE;

• USB;

• AC'97 с шестиканальным цифровым выходом SPDIF (звуковой);

• Ethernet (сетевой);

• IEEE1394 (FireWire);

• WLAN;

• Bluetooth.

От модели чипсета зависят все основные характеристики платы: поддерживаемые процессоры и память, тип системной шины, порты для подключения внешних и внутренних устройств, различные дополнительные возможности (например, интегрированный звук или графическое ядро). Современные чипсеты включают в себя множество встроенных контроллеров (для подключения жесткого диска, шины USB, портов ввода/вывода и др.), что удешевляет компьютер и облегчает его сборку и использование. Иногда можно обойтись вообще без плат расширения, так как все необходимое есть в микросхемах системной логики.

Все группы чипсетов развиваются параллельно и обеспечивают для своих процессоров примерно равные функциональные возможности. Наибольшую популярность приобрели чипсеты, поддерживающие процессоры с интерфейсом Socket 939 (AMD) и LGA 775 (Intel).

При покупке новой материнской платы необходимо узнать технические характеристики чипсета, чтобы быть уверенным, что при модернизации связка материнская плата – процессор – оперативная память будет работать в полную мощность.

Микросхема BIOS. BIOS (Basic Input/Output System – базовая система ввода/вывода) – это программное обеспечение, которое начинает работать сразу после включения компьютера. В BIOS содержатся параметры конфигурации и настройки материнской платы и всех установленных и подключенных к ней устройств.

Как правило, BIOS хранится в одной микросхеме, хотя на многих современных материнских платах присутствуют две (11). Это подстраховка – данное сочетание позволяет загрузить компьютер в случае, если какая-то из микросхем будет повреждена, а также скопировать содержимое одной на другую (например, после неудачной перепрошивки можно восстановить главную BIOS из резервной копии).

2.1. Внутренние устройства

11. Микросхема BIOS в дублирующем исполнении (Dual BIOS)

 

Слоты оперативной памяти предназначены для установки модулей оперативной памяти. Разъемы могут иметь разное количество контактов, что зависит от типа поддерживаемой оперативной памяти, и снабжаются специальными защелками, которые удерживают модули в слоте.

Производители оснащают материнские платы различным количеством слотов для памяти (как правило, не менее двух). Более дорогие материнские платы имеют четыре или шесть разъемов (12).

2.1. Внутренние устройства

12. Внешний вид слотов для оперативной памяти

 

Сегодня используется несколько типов памяти, однако наиболее популярны модули стандарта DDR2 и DDR3. При покупке оперативной памяти нужно учитывать, что материнская плата не способна эффективно работать с разными типами памяти. Кроме того, конструкция слотов такова, что другие модули могут просто в них не установиться.

Слоты плат расширений предназначены для установки различных плат расширения, например видеоадаптера, звуковой карты, SCSI-контроллера, модема и т. п.

В настоящее время повсеместно используются AGP-, и PCI– и PCI Express-шина, их слоты можно найти на материнской плате.

На сегодня PCI Express (13) – это самая быстродействующая и функциональная шина, позволяющая устанавливать две видеокарты вместо одной и выводить изображение одновременно на четыре монитора. Геймерам PCI Express в паре с двух– или четырехъядерным процессором позволяет позволяет достичь максимального быстродействия в играх.

2.1. Внутренние устройства

13. Слоты PCI Express спецификации 16х (вверху и внизу) и 1х (в центре)

 

Производители уже представили несколько разных версий этой шины, последняя из которых, PCI Express 16x, позволяет передавать данные со скоростью до 4 Гбайт/с (по 250 Мбайт/с на каждую линию).

В AGP-слот (14), спецификаций шины которого также существует достаточно много, устанавливается видеокарта, а в PCI-слоты (15) – любые устройства, в том числе устаревшие модели видеоадаптеров.

2.1. Внутренние устройства

14. Слот AGP


2.1. Внутренние устройства

15. Слоты PCI

 

Количество слотов расширения может быть различным и зависит от форм-фактора материнской платы и ее функционального предназначения. Лучше приобретать плату со всеми возможными слотами – это повышает вероятность того, что при модернизации компьютера не придется покупать новую. Однако выбрать между AGP– и PCIE-слотом нужно заранее, поскольку на материнской плате обычно присутствует только один из них.

Коннекторы и разъемы служат для подключения шлейфов данных и проводов питания устройств.

В зависимости от типа и предназначения, разъемы имеют различную форму. Изначально на материнской плате присутствуют разъемы для подключения IDE– или SCSI-устройств, FDD-разъем (16), разъем для подключения питания материнской платы и разъемы для вентиляторов. Кроме того, могут присутствовать ATA-разъемы, разъемы для подключения сетевого кабеля, разъемы для присоединения выхода звуковой карты, дополнительных портов, средств индикации и т. п.

2.1. Внутренние устройства

16. IDE-разъемы (вверху) и FDD-разъем (внизу)

 

Количество разъемов может быть различным и зависит от типа материнской платы. Серверные и дорогие материнские платы содержат большее количество IDE-, SCSI– или USB-разъемов, чем материнские платы, предназначенные для использования в офисных компьютерах.

Локальные порты предназначены для подключения к ним периферийных устройств, например модема, принтера, сканера, веб-камеры и т. д. На любой материнской плате присутствуют порты следующих типов.

• LPT, или параллельный порт (17), представляет собой полнодуплексный порт, через который сигнал передается в двух направлениях по восьми параллельным линиям. Скорость передачи данных – от 800 Кбит/с до 16 Мбит/с в зависимости от настроек в BIOS Setup. Параллельные порты обозначаются индексами LPT1, LPT2 и т. д.

2.1. Внутренние устройства

17. LPT-порт

 

В настоящее время данный тип порта практически не используется – на смену ему пришел более скоростной и функциональный USB-порт. Многие производители материнских плат не выводят его разъем на ATX-панель, однако оставляют возможность подключения к соответствующему LPT-разъему на самой материнской плате.

• COM, или последовательный порт, – полудуплексный порт, через который данные передаются последовательно или сериями в одном направлении в каждый момент времени (сначала в одну, потом в другую сторону). Максимальная скорость – 115 Кбит/с. Последовательные порты обозначаются индексами COM1, COM2 и т. д. К COM-порту подключаются устройства, которые не требуют высокой скорости передачи данных, например мышь, модем, джойстик и т. п.

Устаревшие материнские платы оснащались двумя такими портами, которые отличались количеством контактов; современные имеют один девятиконтактный COM-порт (или два одинаковых) (18).

2.1. Внутренние устройства

18. 9-контактный COM-порт

 

На сегодня этот порт используется все реже из-за скоростной ограниченности, и в скором времени он исчезнет так же, как и LPT-порт.

• USB (19) – наиболее универсальный и часто используемый порт. Данные по USB могут передаваться в асинхронном и синхронном режимах. Теоретическая скорость – от 12 до 480 Мбит/с (в зависимости от спецификации порта).

2.1. Внутренние устройства

19. USB-порты (вверху) и USB-коннекторы (внизу)

 

К USB-порту можно подключать разнообразные устройства – от мыши до цифровой видеокамеры. Теоретически к одному компьютеру через цепочку концентраторов можно подсоединить до 127 USB-устройств. На практике существует проблема: подключение большого количества устройств требует достаточного запаса мощности блока питания, поэтому к компьютеру, как правило, подключаются только два – принтер и сканер.

Важная особенность USB-портов – поддержка технологии plug and play: все присоединенные к USB-порту устройства конфигурируются автоматически, то есть для них не нужно устанавливать драйверы, компьютер сделает это сам.

Обычно на материнской плате присутствуют не менее двух USB-портов. На хороших материнских платах их может быть шесть-восемь.

• PS/2 – параллельный порт, используемый для подключения мыши и клавиатуры. По функциональности он практически идентичен COM-порту, однако он быстрее и компактнее (20).

2.1. Внутренние устройства

20. PS/2-порт (слева) и PS/2-коннектор (справа)

 

На любой материнской плате есть два таких порта. В большем количестве нет необходимости, поскольку подключение нескольких клавиатур и мышей не нужно и не осуществимо на аппаратном уровне.

• IEEЕ1394, или FireWire, – последовательный порт, способный передавать данные со скоростью более 400 Мбит/с, который используется для подключения к компьютеру цифровых видеоустройств, требующих максимально быстрой передачи большого объема информации. Часто к такому порту подсоединяют беспроводные сетевые адаптеры (карты, мосты, маршрутизаторы, точки доступа и т. п.).

Порты FireWire бывают двух типов. В большинстве настольных компьютеров используются шестиконтактные, а в ноутбуках – четырехконтактные (21).

2.1. Внутренние устройства

21. 6-контактный порт FireWire (слева вверху), 4-контактный порт FireWire (справа вверху) и контроллер с двумя портами FireWire (справа внизу)

 

На материнских платах обычно присутствуют два либо четыре порта IEEE1394.

• Ethernet-порт, предназначенный для подсоединения компьютера к локальной сети. На любой материнской плате присутствует интегрированный сетевой контроллер, рассчитанный на подключение сетевого кабеля с разъемом RJ-45. Такой контроллер способен обеспечивать функционирование сети со скоростью 10/100 Мбит/с, хотя все чаще встречаются контроллеры со скоростью работы 100/1000 Мбит/с сетевого стандарта Ethernet 802.3 (проводная сеть). Выпускаются материнские платы, имеющие два интегрированных сетевых контроллера (22).

2.1. Внутренние устройства

22. Интегрированный сетевой контроллер (два правых верхних гнезда)

 

Некоторые производители оснащают материнские платы интегрированным контроллером стандарта Ethernet 802.11 (беспроводная сеть), что является безусловным плюсом.

Аккумуляторная батарея питает CMOS-память, в которой хранятся настройки пользователя, сделанные с помощью BIOS Setup.

Батарея имеет плоскую форму и похожа на таблетку (23). Для ее установки предназначено специальное гнездо с защелкой.

2.1. Внутренние устройства

23. Аккумуляторная батарея

 

Срок службы хорошей аккумуляторной батареи – не менее трех лет.

К выбору материнской платы необходимо подходить продуманно, поскольку именно от нее зависит не только работа остальных устройств, но и возможность дальнейшей модернизации компьютера. Старайтесь выбирать материнскую плату, которая имеет современный чипсет.

Процессор (Central Processing Unit, CPU) – это один из основных компонентов компьютера, который выполняет арифметические и логические операции, заданные программой.

Процессор (24) представляет собой интегральную микросхему (пластину кристаллического кремния прямоугольной формы), на которой размещены электронные блоки, реализующие его функции. Кристалл-пластинка обычно помещается в плоский керамический корпус и соединяется золотыми (медными) проводниками с металлическими штырями (выводами, с помощью которых процессор входит в процессорное гнездо на материнской плате компьютера) или металлическими площадками (сами выводы уже содержатся в процессорном слоте).

2.1. Внутренние устройства

24. Процессор: лицевая (слева) и оборотная (справа) стороны

 

Процессор имеет множество характеристик, с помощью которых можно сравнивать различные модели процессоров от разных производителей. Наличие нескольких производителей влияет на разнообразие характеристик процессора, поскольку вступают в силу патенты на технологии, которые не могут повторяться производителями.

В настоящее время на рынке присутствует только два реальных производителя процессоров – AMD и Intel.

Вот некоторые представители этих типов: Intel Celeron, Intel Core 2 Duo, AMD Athlon, Athlon 64 X2 и др. Они отличаются интерфейсом, используемыми технологиями (алгоритмами, количеством ядер) и быстродействием.

Рынок предлагает большой выбор процессоров разной частоты, начиная с младших (более дешевых) моделей и заканчивая моделями высшей категории, содержащими несколько ядер.

Выпускаются процессоры трех видов – для персональных компьютеров, для серверов и для переносных устройств (ноутбуков, КПК, PDA и др.). Процессоры третьего направления характеризуются уменьшенным потреблением энергии, что важно для данного типа устройств.

Быстродействие процессора зависит от многих факторов, основными из которых являются шины обмена информацией, частота работы ядра, наличие расширений стандартных инструкций, тип и размер кэш-памяти, пропускная способность контроллера памяти, аппаратные технологии ядра и др. Некоторые из них рассмотрены далее.

Частота ядра – это показатель, влияющий на скорость выполнения команд процессором. Она не характеризует его быстродействие: в зависимости от конструкции ядра и его наполнения различными аппаратными блоками, ядро за один такт способно выполнять разное количество команд, поэтому бывает, что процессоры с разной частотой имеют одинаковую производительность.

По умолчанию единицей одного такта считается 1 Гц. Это означает, что при частоте 1 ГГц ядро процессора выполняет 1 млрд тактов. Теоретически, если считать, что за один такт ядро выполняет одну операцию, скорость работы процессора составляет 1 млрд операций в секунду. На практике этот показатель вычислить сложно, поскольку на него влияет количество выполняемых за такт операций, сложность операции, пропускная способность шин кэш-памяти и оперативной памяти и т. д.

Шины. Этот термин следует понимать как некоторый канал с определенными характеристиками, через который процессор обменивается данными с остальными компонентами. Примером может быть канал, по которому идет обмен данными с кэш-памятью, контроллером памяти, видеокартой, жестким диском и т. д.

Главными характеристиками шины являются ее разрядность и частота работы: чем они выше, тем больше данных проходит через нее за единицу времени, а значит, больше будет обработано процессором или другим компонентом. К примеру, процессоры AMD имеют несколько подобных шин (внешних и внутренних), которые работают на разных частотах и имеют различную разрядность. Это связано с технологическими особенностями, поскольку не все компоненты способны функционировать с частотой самой быстрой шины.

Именно здесь кроется первая и главная ошибка многих пользователей, которые считают, что частота процессора является показателем скорости его работы. На самом деле все зависит от пропускной способности шины. Например, если предположить, что за один такт ядра передается 64 Бит или 8 Байт информации (64-битный процессор) и частота шины составляет 100 МГц, пропускная способность шины составит 8 Байт х 100 000 000 тактов, что равно приблизительно 763 Мбайт. В то же время частота ядра процессора может быть в несколько раз выше, что означает, что при достижении этого показателя оставшийся запас скорости процессора простаивает.

С другой стороны, существуют шины, например между процессором и кэш-памятью первого уровня, которые позволяют наиболее эффективно обмениваться данными, что достигается за счет их работы на одной частоте.

Разрядность. Разрядность процессора определяет количество информации, которое он может обработать за один такт: чем она выше, тем больше информации он сможет обработать. Однако это не означает, что скорость процессора повышается. Разрядность влияет на объем адресуемых данных (а, соответственно, и на объем используемой оперативной памяти), хотя может повышать и скорость выполнения целочисленных операций. Разрядность процессора тесно связана с разрядностью модулей оперативной памяти.

Стоит отметить, что разрядность процессора не означает, что он работает именно с ней. Это просто обозначает, что он может выполнять, к примеру, 64-битные команды, а в то же время работать с разрядностью 80 или 128 Бит при операциях с плавающей точкой.

На сегодня используются 32– и 64-разрядные процессоры. При этом если раньше 64-битные процессоры использовались только в серверных решениях, то теперь они часто встречаются в обычных компьютерах.

Кэш-память. Скорость работы процессора определяется скоростью работы всех его участков, которая зависит от их аппаратных возможностей и пропускных способностей соответствующих шин данных. Предвидя такую ситуацию, производители процессоров с целью максимально ускорить работу аппаратных блоков изобрели и внедрили кэш-память.

Главное отличие кэш-памяти от оперативной памяти компьютера – скорость работы. На практике скорость работы кэш-памяти в десятки раз выше скорости работы оперативной памяти, что связано с технологическим процессом их изготовления и условиями функционирования.

Существует несколько типов кэш-памяти. Наиболее быстрой является кэш-память первого уровня, затем – второго и третьего. Обязательными обычно являются только первые две позиции, хотя можно сделать кэш-память четвертого, пятого уровня и т. д. В любом случае эта память будет быстрее оперативной.

Размер кэш-памяти может быть разным – в зависимости от модели процессора и его производителя. Обычно размер кэш-памяти первого уровня значительно меньше второго или третьего. Кроме того, кэш-память первого уровня самая быстродействующая, поскольку работает на частоте ядра процессора.

Размер кэш-памяти процессоров Intel заметно больше, чем AMD. Это связано с алгоритмом работы кэш-памяти. У процессоров AMD кэш-память имеет эксклюзивный тип, то есть в памяти любого уровня содержатся только уникальные данные. Кэш-память процессоров Intel может хранить повторяющиеся данные, что объясняет ее увеличенный размер.

Кэш-память, как и обычная, имеет разрядность, от которой зависит ее быстродействие, поскольку большая разрядность позволяет передавать больше данных за один такт. Процессоры различных производителей работают с кэш-памятью по-разному: одни используют большую разрядность, например 256 Бит, вторые – малую, но в режиме одновременного чтения и записи.

Количество ядер. Недавно на рынке процессоров появились модели, содержащие несколько ядер. В отличие от виртуальных ядер, которые предлагает технология HyperThreading, на процессорной пластине располагается несколько физических ядер. На сегодня получают распространение процессоры, у которых имеется четыре независимых ядра.

Первые двухъядерные процессоры имели два независимых ядра, то есть ядра с одинаковым строением, включая кэш-память первого и второго уровня. Сегодня ядра имеют общую кэш-память второго уровня, что позволяет увеличить производительность процессора.

Использование многоядерного процессора дает заметное повышение производительности компьютера. Такой процессор практически невозможно загрузить работой на 100 % из-за некоторых технологических аспектов. Это означает, что ситуация, когда приложение настолько заняло процессор, что компьютер не реагирует ни на какие действия и его приходится перезагружать с помощью кнопки Reset, не возникнет.

Производительность процессора не всегда увеличивается: использование нескольких ядер подразумевает соответствующие приложения. На сегодня достаточно мало приложений, написанных с учетом многоядерности. Это означает, что обычно загружается только одно ядро. Однако многоядерность обязательно будет востребована.

Маркировка. Раньше процессоры можно было легко идентифицировать по названию и тактовой частоте. Однако с появлением процессоров с разной архитектурой (разными ядрами) подобная маркировка процессоров оказалась малоэффективной. Неразберихи добавили также процессоры AMD, которые в качестве тактовой частоты используют Pentium-рейтинг, а не реальную частоту процессора.

Сейчас существует определенный способ маркировки процессоров Intel, который можно расшифровать по таблице соответствий. Для процессоров AMD подобная маркировка пока не используется.

Интерфейс. Этот термин означает конструкцию процессора, которая, в свою очередь, определяет особую форму процессорного слота на материнской плате.

За время существования процессоров сменилось множество процессорных слотов, что было вызвано постоянным усложнением конструкции процессора и увеличением количества контактов на его пластине. Процессоры разных производителей также имеют различное количество контактов.

Несколько лет назад была введена маркировка для процессоров Intel, которая сменила показатель частоты процессора на незнакомый пользователям, но понятный производителям номер. Процессоры AMD придерживаются старого способа маркировки, который включает название процессора, его Pentium-рейтинг и дополнительный код из цифр и букв, с помощью которого можно узнать о ядре, технологическом процессе, степпингах и других показателях.

При повышении температуры любые электронные составляющие могут выйти из строя. В первую очередь это касается процессора.

Современные процессоры сильно нагреваются, особенно те, которые созданы с применением устаревших технологий. Тепловыделение таких процессоров может составлять до 130 Вт. Именно поэтому важно обеспечить эффективную систему охлаждения.

До недавнего времени существовал один способ охлаждения процессора – применение радиаторов. Для охлаждения радиатора использовался вентилятор. Сегодня эту проблему можно решить несколькими способами.

Воздушное охлаждение применяется в 90 % компьютеров. Для охлаждения процессора используется радиатор, который, в свою очередь, охлаждается закрепленным на нем вентилятором с высокой скоростью вращения. В сборке такое устройство называется кулером (25).

2.1. Внутренние устройства

25. Кулер

 

Сам по себе радиатор не охлаждает процессор, а только увеличивает площадь рассеивания тепла и создает условия для эффективного прохождения воздуха, поступающего от вентилятора.

Что касается материала, то наибольшой популярностью пользуются медные радиаторы, которые позволяют рассеивать тепло на 20–30 % эффективнее, чем алюминиевые.

В последнее время часто используется воздушное охлаждение с применением тепловых трубок. Тепловая трубка – это герметичное устройство с теплоносителем, которое позволяет переносить тепло, используя для этого молекулярный механизм переноса пара.

На практике это выглядит следующим образом. Нагретый, например, радиатором процессора теплоноситель (жидкость) тепловой трубы превращается в пар и переносится в ее холодную часть, где конденсируется и охлаждается, после чего возвращается в исходную точку. Получается замкнутый цикл и практически безупречная и вечная система.

Конструкция охлаждающей системы с применением тепловых трубок может быть различной – в зависимости от количества переносимого тепла и наличия свободного места для ее организации. Однако чем больше тепловых трубок участвует в системе охлаждения, тем больше рассеивается тепла.

Подобная система охлаждения, реализованная для процессора, напоминает обычный кулер, только большего размера (26), и устанавливается, как правило, в мощные рабочие станции и серверы. Ее предпочитают любители экстремального разгона.

2.1. Внутренние устройства

26. Кулер на основе тепловых трубок

 

Жидкостное охлаждение применяется сравнительно давно. Существует несколько его способов. Один из них заключается в следующем. На процессор устанавливается металлический радиатор, представляющий собой теплообменник особой конструкции (27): металлическая трубка определенное количество раз изгибается внутри радиатора, покрывая всю его площадь. К концам трубки присоединяется водяная помпа, которая с некоторой скоростью перекачивает дистиллированную воду или другую жидкость. Холодная жидкость, протекая через трубку в теплообменнике, охлаждает его и одновременно процессор. Далее вода попадает в специальный резервуар, снабженный одним или двумя вентиляторами, где охлаждается для следующего цикла. Подбирая скорость перекачивания воды, конструкцию теплообменника и его охлаждение, можно добиться максимальной производительности системы.

2.1. Внутренние устройства

27. Теплообменник системы водяного охлаждения

 

Установить водяную систему охлаждения в системный блок просто, что привлекает многих, кто увлекается разгоном. Таким способом можно параллельно охлаждать процессор и память на графическом адаптере, которые также сильно нагреваются.

Примечание

Использование водяного охлаждения несет в себе потенциальную угрозу. При нарушении целостности конструкции вода может попасть на электрические схемы, что приведет к замыканию, последствия которого непредсказуемы.

В продаже сегодня имеется множество наборов водяного охлаждения, которые сопровождаются инструкцией по сборке.

Минус системы жидкостного охлаждения – высокая стоимость, однако для любителей игр это не препятствие.

Оперативная память – одно из устройств, от объема и скорости работы которого зависит быстродействие всего компьютера. Ее задача – своевременное предоставление процессору необходимой информации.

Наиболее популярны модули памяти DDR2 SDRAM (28).

2.1. Внутренние устройства

28. Модули оперативной памяти DDR2 SDRAM

 

Этот стандарт обеспечивает параллельную передачу данных в двух направлениях, используя 64-битную шину. За один такт DDR2 передает в два раза больше информации, чем DDR. Технологические нововведения позволяют уменьшить потребление энергии.

На рынке начали встречаться модули памяти стандарта DDR3, которые имеют еще большую пропускную способность. Однако в результате тестов заметной разницы в производительности модулей DDR2 и DDR3 не обнаружено, поскольку модули DDR3 имеют большие тайминги. Кроме того, использование таких модулей памяти требует наличия самых новых чипсетов и, соответственно, материнской платы.

При выборе типа оперативной памяти следует помнить, что ее должна поддерживать материнская плата, поэтому перед приобретением модулей необходимо обратиться к справочной информации, прилагаемой к материнской плате. Стоит также учитывать, что современные материнские платы умеют работать с оперативной памятью в двухканальном режиме, позволяя добиться прироста производительности, но чтобы память заработала в таком режиме, требуется парное число модулей, например два модуля по 512 Мбайт, и установка их в соответствующие слоты памяти.

Для любителей трехмерных игр видеокарта – главное устройство. Именно от нее в 90 % случаев зависит скорость работы в этих приложениях, хотя многие пользователи полагают, что самое важное – процессор.

Видеокарта (29) служит для формирования и вывода на монитор изображения 2D (двухмерного, плоского) и 3D (объемного). От нее зависит качество изображения на экране и скорость воспроизведения графики.

2.1. Внутренние устройства

29. Видеокарта

 

Особенно критична скорость работы с трехмерной графикой, поскольку все современные игры и графические программы для обработки сложных 3D-объектов используют аппаратные возможности видеокарты.

На производительность графической подсистемы компьютера влияет множество показателей, основными среди которых являются:

• скорость шины данных, по которой передается видеоинформация;

• скорость установленной на видеокарте видеопамяти;

• объем установленной видеопамяти;

• скорость графического процессора и сопроцессора;

• аппаратные технологии работы с 3D-графикой.

На скорость работы видеокарты также влияет центральный процессор, но современные графические адаптеры используют его ресурсы крайне слабо, поскольку имеют собственный, не менее производительный графический процессор.

Важной составляющей видеокарты является графический чипсет, от которого зависит набор технологий и инструкций, используемый графическим процессором для обработки информации: чем больше информации сможет обработать графический процессор на аппаратном уровне, тем меньше придется работать центральному процессору, доделывая работу на программном уровне, а следовательно, тем быстрее будет работать видеоподсистема компьютера.

Разрешение выводимого изображения. Разрешение, с которым видеокарта выводит изображение на экран монитора, влияет на качество картинки. Пользователю вряд ли понравится изображение с прорехами.

Разрешение определяется количеством точек (пикселов), одновременно отображающихся на экране. Например, для 15-дюймовых мониторов стандартным считается разрешение 1024 х 768, для 17-дюймовых – 1280 х 1024, для 19-дюймовых – 1600 х 1200 и т. д.

Примечание

Видеокарта способна формировать изображение и более высокого разрешения, однако все зависит от возможностей монитора, которые пока далеки от возможностей видеокарты.

Глубина цвета. Под глубиной цвета подразумевается количество одновременно выводимых цветов: чем их больше, тем реалистичнее изображение.

Глубина цвета может быть любой, однако на практике используются показатели, созданные по конкретной формуле. С помощью 1 бита отображается два цвета – черный и белый, с помощью 2 бит – четыре цвета и т. д. В итоге получается арифметическая зависимость 2n, где n – количество бит.

Сегодня официально принятым считается цвет глубиной 32 бит, который позволяет передавать несколько миллионов оттенков, чего достаточно для вывода фотореалистичных изображений.

Объем видеопамяти. Для обработки видеоданных графическому процессору необходим некоторый объем видеопамяти, где он смог бы хранить их. Это особенно важно при формировании и обработке сложных трехмерных объектов.

Подсчитать затраты памяти, которая расходуется для отображения двухмерной информации, просто: нужно умножить текущее разрешение на глубину цвета, например 1280 х 1024 х 32 = 41 943 040 бит = 5120 Кбайт = 5 Мбайт. Получается немного, если просто смотреть на изображение Рабочего стола или рисовать в редакторе Paint. Однако в играх, где прорисовка даже простого объекта требует несколько мегабайт памяти, ресурсы расходуются быстро. Можно сделать вывод, что чем больше памяти, тем быстрее обрабатывается и выводится на экран графика.

В видеоадаптерах используется динамическая память с произвольным доступом, которая является самой эффективной, поскольку позволяет передавать данные в две стороны за один такт процессора. Современные видеокарты оснащаются памятью DDR, время доступа к которой составляет 0,6–2 нс.

В настоящее время наибольшее распространение получили видеоадаптеры с объемом памяти 256 Мбайт. Любители максимального комфорта покупают видеокарты с объемом памяти 512 Мбайт.

При выборе видеокарты следует в первую очередь обратить внимание на чипсет и объем памяти; если вы планируете разгонять видеокарту, лучше остановиться на моделях с активной системой охлаждения, то есть с вентилятором.

Жесткий диск (Hard Disk Drive, HDD), или винчестер, предназначен для постоянного хранения информации, используемой при работе с компьютером, и быстрого доступа к ней. Это могут быть самые различные данные – документы, видео, аудио, базы данных и др.

Винчестер выглядит как металлическая коробка высотой 2–4 см и устанавливается в 3,5– или 5,25-дюймовый отсек компьютера (30).

2.1. Внутренние устройства

30. Винчестер (вид сверху и снизу)

 

Внутри винчестера находятся одна или несколько пластин (дисков), на которые записывается информация. Данные записываются и считываются блоком магнитных головок, которые, не соприкасаясь, скользят над пластинами. Передвигает этот блок высокоточный шаговый двигатель, которым управляет интегрированный контроллер.

В рабочем состоянии пластины постоянно вращаются; чем выше скорость их вращения, тем быстрее считывается и записывается информация. Сегодня наиболее распространены винчестеры со следующими скоростями вращения:

• 7200 об/мин – для IDE– и SATA-дисков;

• 10 000–15 000 об/мин – для SCSI-дисков.

Жесткие диски отличаются интерфейсом, объемом, скоростью вращения пластин, кэш-буфером, временем позиционирования, временем поиска и другими параметрами. Выбирая жесткий диск, в первую очередь нужно руководствоваться первыми двумя из вышеперечисленных параметров: от интерфейса зависит скорость обмена между винчестером и контроллером материнской платы; что касается объема, сегодня встречаются модели с объемом 1 Тбайт (1024 Гбайт).

Чем меньше временные характеристики винчестера, тем быстрее жесткий диск реагирует на поступающие команды, а значит, придется меньше ждать, записывая и считывая большие объемы информации.

Сегодня наиболее распространены три типа интерфейсов, каждый из которых имеет свои преимущества и недостатки.

• IDE – один из первых интерфейсов, завоевавший популярность благодаря простоте, дешевизне и достаточной эффективности. IDE-контроллер встраивается в жесткий диск, что избавляет от необходимости приобретать дополнительные платы расширения.

За все время существования IDE-интерфейса было разработано множество стандартов, описывающих правила и скорость обмена данными между контроллерами винчестера и материнской платы. Наибольшее распространение получили спецификации UltraATA/100 и UltraATA/133, которые позволяют передавать данные со скоростью 100 и 133 Мбайт/с.

IDE-устройства чаще всего используются в рабочих компьютерах пользователей, поскольку интерфейс имеет ряд ограничений.

Для подключения IDE-устройств к материнской плате используется 80-жильный шлейф. Как правило, на материнской плате присутствует от одного до четырех IDE-разъемов.

• SerialATA – тип интерфейса, который появился в результате развития IDE-интерфейса. Работа над его созданием началась в 1999 году. В итоге была выпущена спецификация, которая позволяла передавать данные со скоростью до 150 Мбайт/с. Затем появилась еще одна спецификация, имеющая пропускную способность вдвое выше. В настоящий момент ведется разработка спецификации SerialATA-3, скоростные показатели которой достигнут 600 Мбайт/с. Однако практика показывает, что скорость чтения информации с физического диска винчестера далека от теоретически возможной, поэтому дальнейшее развитие спецификации интерфейса не даст заметных результатов, пока не будет увеличена реальная скорость считывания данных.

На всех современных материнских платах присутствуют коннекторы для подключения SATA-винчестеров с помощью четырехпроводного шлейфа. Их количество может быть различным, но, как правило, таких коннекторов два-четыре (с возможностью создания RAID-массива).

• SCSI – интерфейс, который развивался параллельно с IDE-интерфейсом и изначально использовался в серверах. Современные SCSI-контроллеры поддерживают скорость передачи данных до 320 Мбайт/с (что значительно выше, чем у аналогичных IDE-устройств). SCSI-интерфейс обладает неоспоримыми преимуществами, среди которых – возможность параллельного считывания информации с нескольких накопителей, поддержка большого количества накопителей, высокая надежность и т. д.

При всех достоинствах, SCSI – дорогой интерфейс. Кроме того, для использования SCSI-винчестера необходим соответствующий контроллер, который также стоит недешево. Однако для обработки видео такой винчестер очень пригодится.

При выборе жесткого диска главными критериями должны быть скорость чтения/записи информации и объем диска. Стоит также рассмотреть модели винчестеров, которые имеют наименьший уровень шума при работе.

Что касается выбора интерфейса жесткого диска, то все зависит от того, где будет использоваться винчестер. В любом случае, SATA-винчестер предполагает отличную производительность.

Современный компьютер невозможно представить без CD/DVD-привода, поскольку практически вся информации (не учитывая Интернет) распространяется именно на оптических носителях.

Объем первых компакт-дисков составлял 650 Мбайт. Они предназначались для любителей высококачественной музыки. Позже компакт-диски стали использоваться для записи и хранения компьютерных данных.

Со временем появились более вместительные диски (DVD), которые позволяли записывать до 4,7 Гбайт информации. Как и CD, DVD изначально использовались в мультимедийных целях – для распространения высококачественного видео. На современные DVD можно вместить около 17 Гбайт информации, которая записывается в разные слои диска и на обе его стороны.

Для считывания информации с CD и DVD используются устройства CD/DVDROM, для записи данных – приводы CD/DVD-RW.

Сегодня CD-приводы устанавливаются в компьютеры редко, так как любой DVD-привод кроме дисков своего формата умеет читать и записывать информацию на CD. Существенную роль сыграл и тот факт, что цена на DVD-приводы значительно снизилась.

Внешне приводы CD и DVD практически не отличаются. Они выглядят как металлическая коробка, имеющая выдвижной лоток (31).

2.1. Внутренние устройства

31. DVD-привод

 

Как и винчестеры, разные модели приводов CD/DVD отличаются техническими показателями – скоростью считывания информации с дисков, скоростью записи одноразовых и перезаписываемых CD и DVD, временем позиционирования лазера, кэш-буфером, поддерживаемыми форматами и др.

Под скоростью работы привода (единицы измерения – Кбайт/с) подразумевается объем данных, передаваемых за единицу времени. С компакт-дисков информация считывается с базовой скоростью 150 Кбайт/с. Надпись 52х на корпусе означает 52-кратную скорость считывания, которая равняется 52 х 150 Кбайт/с = 7800 Кбайт/с. Для обеспечения такой скорости привод 52х вращает диск со скоростью 7200 об/мин.

Однако скорость передачи данных – не единственный показатель. Существует такой параметр, как время доступа. Оно равно времени задержки между получением команды и началом считывания с диска. Данный параметр принимает среднее значение, поскольку с различных областей на диске информация считывается с разной скоростью. Время доступа измеряется в миллисекундах и является величиной, обратно пропорциональной скорости передачи данных: чем выше скорость, тем меньше время доступа.

Скорость считывания и записи информации отличаются (особенно это касается DVD), что объясняется сложностью реализации процесса записи, который требует от рабочего лазера больших временных затрат.

При выборе CD/DVD-привода желательно остановиться на продукции известного производителя. Обязательно убедитесь в том, что привод способен работать со всеми существующими форматами. Это позволит записывать максимально возможные для выбранного носителя объемы информации.

Компьютер давно превратился в мультимедийный центр. Во многом это обусловлено появлением множества мультимедийных и игровых приложений. Мультимедийный центр невозможно представить без хорошего звукового контроллера и качественной акустической системы.

Звуковая карта – это устройство, состоящее из звукового процессора и других вспомогательных компонентов, с помощью которых формируется звуковой сигнал необходимого уровня и окраски.

Звуковые карты выпускаются в различном исполнении – в виде интегрированного в материнскую плату решения или карты расширения, устанавливаемой в PCI-слот (32). Часто встречаются внешние решения – профессиональные высококачественные звуковые устройства.

2.1. Внутренние устройства

32. Звуковая плата в виде карты расширения

 

Качество интегрированных звуковых контроллеров постоянно улучшается, поэтому необходимость в звуковых платах, устанавливаемых в слот, отпадает. Однако бытует мнение, что такие звуковые платы качественнее.

Все звуковые адаптеры, независимо от их исполнения, имеют стандартный набор выходов и контактов, к которым подключается акустическая система или внешний усилитель. Хорошие звуковые карты, кроме трех стандартных разъемов – микрофонного, акустического и линейного, оснащаются дополнительными. В частности, если звуковая карта поддерживает спецификацию 5.1 и выше, то на ней могут присутствовать отдельные выходы для левого и правого акустического канала, выход на фронтальные и тыльные колонки и т. д. Однако, чтобы услышать звук из самых простых динамиков или наушников, достаточно подключить их к акустическому выходу.

Сегодня выбрать подходящее звуковое решение просто. На многих материнских платах реализованы высококачественные звуковые контроллеры спецификации 7.1, работающие со всеми существующими звуковыми стандартами; если такое решение не устраивает, можно приобрести внешнее звуковое устройство – качественнее его ничего нет.